A Threshold Equation for Action Potential Initiation
نویسندگان
چکیده
In central neurons, the threshold for spike initiation can depend on the stimulus and varies between cells and between recording sites in a given cell, but it is unclear what mechanisms underlie this variability. Properties of ionic channels are likely to play a role in threshold modulation. We examined in models the influence of Na channel activation, inactivation, slow voltage-gated channels and synaptic conductances on spike threshold. We propose a threshold equation which quantifies the contribution of all these mechanisms. It provides an instantaneous time-varying value of the threshold, which applies to neurons with fluctuating inputs. We deduce a differential equation for the threshold, similar to the equations of gating variables in the Hodgkin-Huxley formalism, which describes how the spike threshold varies with the membrane potential, depending on channel properties. We find that spike threshold depends logarithmically on Na channel density, and that Na channel inactivation and K channels can dynamically modulate it in an adaptive way: the threshold increases with membrane potential and after every action potential. Our equation was validated with simulations of a previously published multicompartemental model of spike initiation. Finally, we observed that threshold variability in models depends crucially on the shape of the Na activation function near spike initiation (about -55 mV), while its parameters are adjusted near half-activation voltage (about -30 mV), which might explain why many models exhibit little threshold variability, contrary to experimental observations. We conclude that ionic channels can account for large variations in spike threshold.
منابع مشابه
LASERS WITHOUT INVERSION: DENSITY OPERATOR METHOD
A quantum theory of a two and three-level laser with injected atomic coherence is developed by using a density operator method, to the best of our knowledge, for the first time. The initial atomic coherence plays an essential role. At steady state, the equation of motion for the density operator yields to exhibit laser without inversion and a phase locking but no threshold for the laser fie...
متن کاملAction potential threshold of hippocampal pyramidal cells in vivo is increased by recent spiking activity.
Understanding the mechanisms that influence the initiation of action potentials in single neurons is an important step in determining the way information is processed by neural networks. Therefore, we have investigated the properties of action potential thresholds for hippocampal neurons using in vivo intracellular recording methods in Sprague-Dawley rats. The use of in vivo recording has the a...
متن کاملEffect of incipient gullying mechanisms on topographic threshold conditions for gully initiation in southwestern Iran
متن کامل
High threshold, proximal initiation, and slow conduction velocity of action potentials in dentate granule neuron mossy fibers.
Dentate granule neurons give rise to some of the smallest unmyelinated fibers in the mammalian CNS, the hippocampal mossy fibers. These neurons are also key regulators of physiological and pathophysiological information flow through the hippocampus. We took a comparative approach to studying mossy fiber action potential initiation and propagation in hippocampal slices from juvenile rats. Dentat...
متن کاملRole of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons.
In many neuron types, the axon initial segment (AIS) has the lowest threshold for action potential generation. Its active properties are determined by the targeted expression of specific voltage-gated channel subunits. We show that the Na+ channel NaV1.6 displays a striking aggregation at the AIS of cortical neurons. To assess the functional role of this subunit, we used Scn8amed mice that are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2010